

SETOR DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE MANUFATURA MESTRADO PROFISSIONAL

EMAN-7013 - USINAGEM ASSISTIDA POR COMPUTADOR

PROF.: DALBERTO DIAS DA COSTA

E-MAIL: dalberto@ufpr.br

F.: 3361-3207

www.labusig.ufpr.br

Ementa:

- Planejamento de processos de usinagem.
- Seleção de máquinas, dispositivos, ferramentas e condições de corte.
- Técnicas para programação de máquinas-ferramenta.
- Simulação da trajetória de ferramentas.
- Base de dados sobre ferramentas e condições de corte.
- Sistemas especialistas para planejamento da usinagem

Objetivos:

Gerais: atualizar e melhorar a formação dos futuros Mestres em Engenharia de Manufatura, tendo como foco a capacidade de pesquisa na literatura científica, a redação de relatórios e artigos científicos, a formatação e solução de problemas por meio de métodos científicos.

Específico: compreender o estado atual da pesquisa e desenvolvimento tecnológico referente à geração, transmissão e integração de informações sobre processos de usinagem

Programa:

Semanas	Datas	Assuntos
1	24/set	Apresentação da disciplina: ementa, bibliografia, programa e forma de avaliação.
2	01/out	Planejamento de processos de fabricação e planejamento da usinagem. Estado da arte e desafios.
3	08/out	Programação CNC utilizando software CAM
4	15/out	Planejamento baseado em features de usinagem e geração da folha de processos – revisão da literatura
5	22/out	Planejamento baseado em features de usinagem e geração da folha de processos – revisão da literatura
6	29/out	Entrega do artigo de revisão e apresentação do seminário: programação baseada em features e geração da folha de processos
7	05/nov	Projeto Geração Automática da Folha de Processos (GAFP) – Proposta de metodologia I
8	12/nov	Projeto Geração Automática da Folha de Processos (GAFP) – Proposta de metodologia I (continuação)
9	19/nov	Testes da metodologia proposta para GAFP no software NX-CAM
10	26/nov	Testes da metodologia proposta para GAFP no software NX-CAM (continuação)
11	03/dez	Discussão dos resultados e finalização dos relatórios
12	10/dez	Finalização do artigo – apresentação, discussão e avaliação

Bibliografia:

Chang, TC, Wysk, Wang, HP. Computer-Aided manufacturing. Prentice Hall, 1998. ISBN: 013754524X

Madison, J. G. CNC Machining Handbook: basic theory, production data, and machining procedures. Industrial Press Inc. 1996 ISBN-10: 0831130644

Scallan, P. Process Planning: The Design/Manufacture Interface. Amsterdam: Butterworth-Heinemann. 2003 ISBN-10: 0750651296

Chang, T-C. Expert process planning for manufacturing. Reading, Mass.,: Addison-Wesley, 1980. ISBN-10: 0201182971

Wang, L. Process Planning and Scheduling for Distributed Manufacturing. London: Springer-Verlag London Limited, 2007. ISBN-10: 184996646X

Bibliografia:

Outros Livros:

 James Rumbaugh , Ivar Jacobson , Grady Booch. The Unified Modeling Language Reference Manual (2nd Edition)

•

 Craig Larman - Applying UML and patterns: an introduction to object-oriented analysis and design and the unified process

Bibliografia:

Revistas:

- International Journal of Advanced Manufacturing Technology
- Robotics and Computer-Integrated Manufacturing
- International Journal of Production Research
- Computer-Aided Design

•

Forma de avaliação:

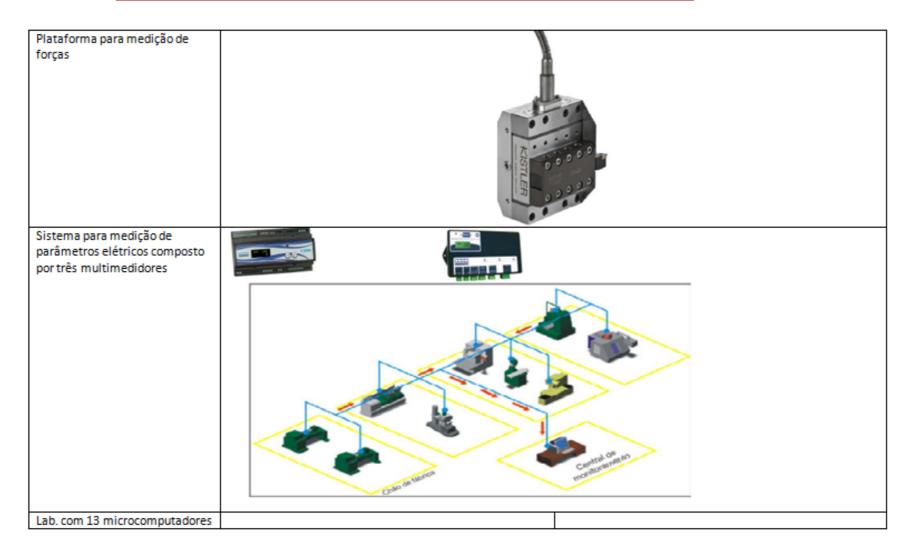
Leitura, síntese, apresentação e discussão de artigos científicos distribuídos em aula: 25%

Participação nas aulas. Inclui aqui a presença, interesse pela disciplina, sugestões e pontualidade na entrega dos trabalhos: 40%

Preparação e redação do artigo científico sobre o projeto desenvolvido: 35%

Projetos desenvolvidos e em desenvolvimento no Laboratório de Usinagem da UFPR:

Projetos concluídos e em andamento no Laboratório de Usinagem


Título	Situação	
Editor CNC	Concluído	
Fabricação sob medida de próteses	Concluído	
Fresamento Helicoidal Interpolado	Concluído	
Rede Usidados	Suspenso!!	
Planejamento de Processos	Em andamento	
Usinabilidade dos Materiais	Em andamento	
Corte a Laser	Em andamento	
Sustentabilidade dos Processos de Usinagem	Em andamento	

Vide detalhes em: https://labusig.ufpr.br/pesquisa/

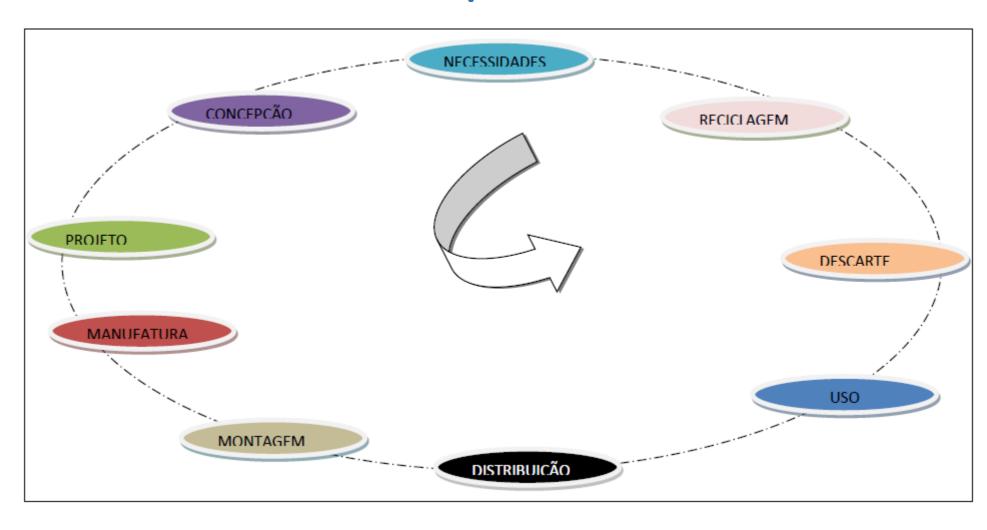
<u>Infraestrutura do Laboratório de Usinagem – DEMEC/UFPR:</u>

<u>Infraestrutura do Laboratório de Usinagem – DEMEC/UFPR:</u>

<u>Infraestrutura do Laboratório de Usinagem – DEMEC/UFPR:</u>

Planejamento de processos

Planejamento da usinagem


Os temas se confundem, pois a usinagem é um processo de fabricação

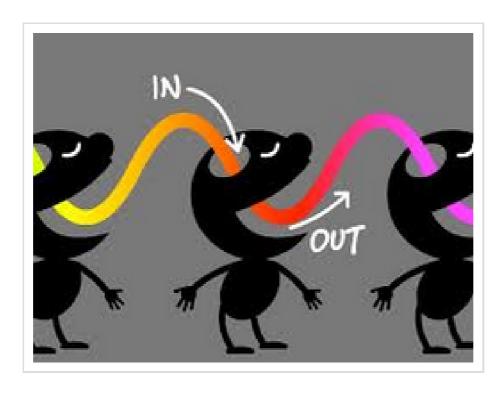
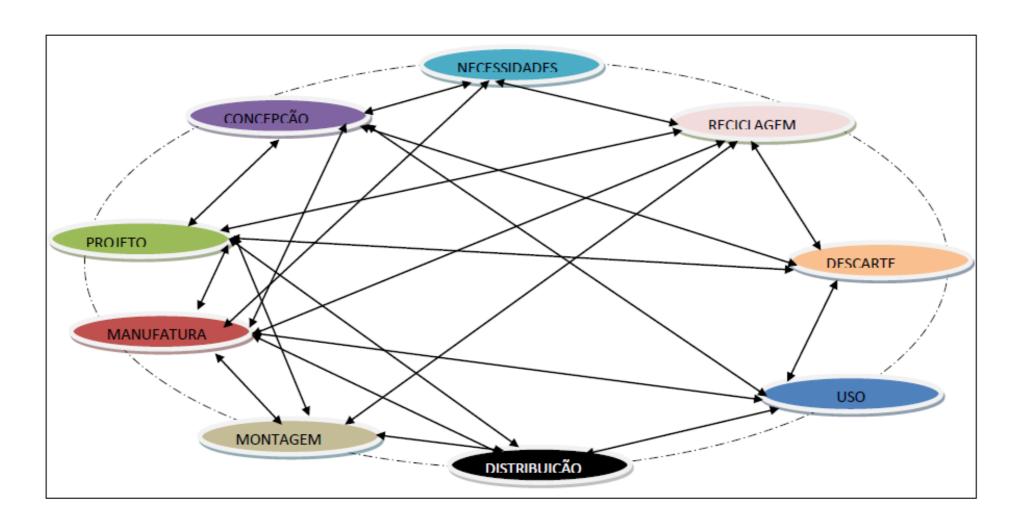
•

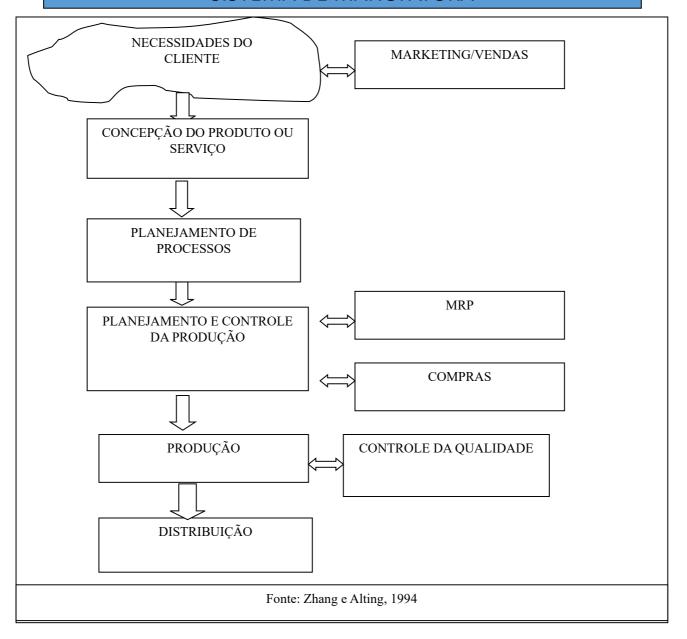
Histórico

 Processos de usinagem são caracterizados por sua elevada flexibilidade e, por isso, possuem um fluxo de informação bem complexo o que demanda investimento em técnicas computacionais para sua sistematização, automação e integração.

Planejamento de processos dentro do ciclo de vida de um produto

O FLUXO DE INFORMAÇÃO NÃO É UNIDIRECIONAL E NEM É SEQUENCIAL

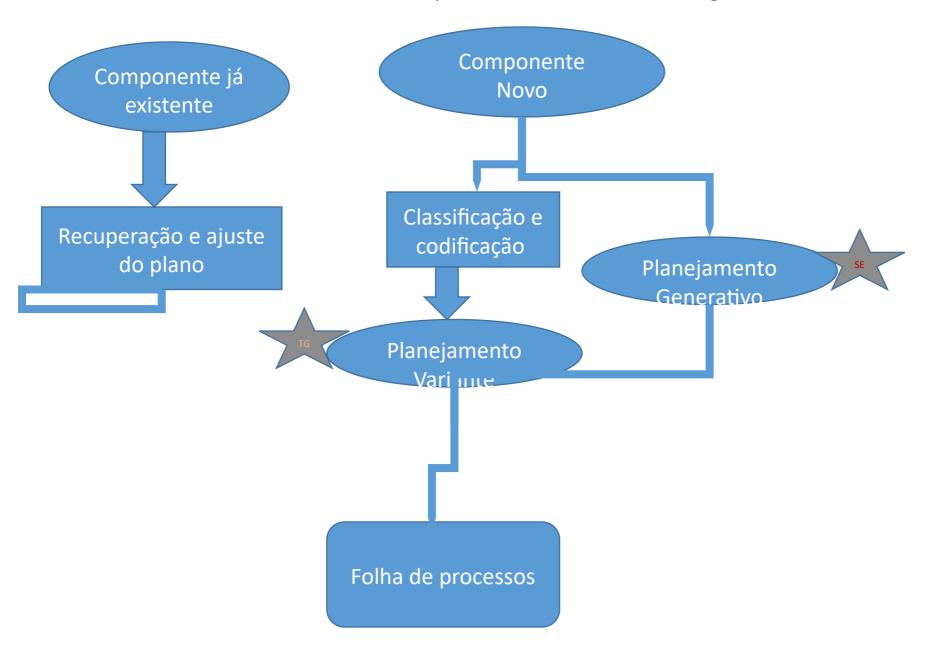




Image credits: https://encryptedtbn3.gstatic.com/

ELE É BEM MAIS CAÓTICO...

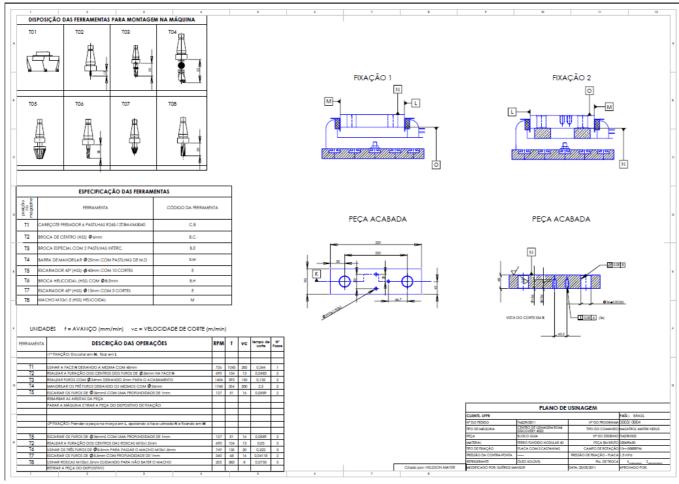
UMA IDEIA APROXIMADA DE COMO ELE OCORRE EM UM SISTEMA DE MANUFATURA

SISTEMA DE MANUFATURA



COMPARAÇÃO DOS SISTEMAS DE MANUFATURA

CRITÉRIO	SISTEMA DE MANUFATURA				
	Produção em massa	Produção em lotes	Produção sob encomenda		
Diversificação dos produtos	Nula	Média/alta	Alta		
Grau de automação	Elevado	Elevada/média	Baixo		
Flexibilidade dos equipamentos	Baixa	Média/alta	Alta		
Especialização da mão- de-obra	Alta	Média/alta	generalista		


NECESSIDADE DE PLANEJAMENTO??

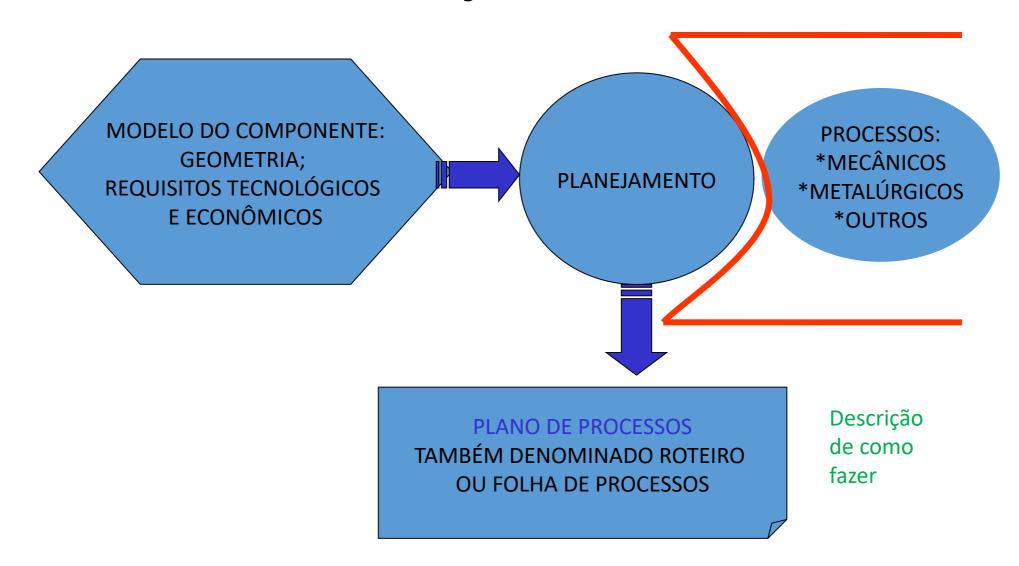
CAPP – Computer-Aided Process Planning

FOLHA DE PROCESSOS

* Deve conter informações suficientes para execução do processo; emissão de ordens de serviços; cálculo dos tempo e do custo de cada operação; identificação de gargalos e outros dados necessários ao PCP.

OBS.: o termo *folha* tem origem na "folha de papel", mas atualmente, o plano de processo é processado e armazenado em um meio digital.

AÇÕES


NO CONTEXTO DO
PLANEJAMENTO, AÇÃO
SIGNIFICA COMO MUDAR
DE ESTADO

AÇÃO 🗢 EFEITO

PROCESSOS DE FABRICAÇÃO

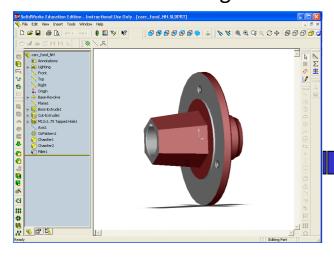
APLICAÇÃO DE RECURSOS
HUMANOS, MATERIAIS E ENERGÉTICOS
PARA TRANSFORMAR UM PRODUTO
DE UM ESTADO BRUTO
PARA UM ESTADO ACABADO

FLUXO DE INFORMAÇÕES

NÍVEL DE AUTOMAÇÃO DO PLANEJAMENTO

PLANEJAMENTO MANUAL

Desenho impresso Planejador AA(1:1) Todos os chanfros: 1 x 45°


Processos

NÍVEL DE AUTOMAÇÃO DO PLANEJAMENTO

PLANEJAMENTO AUXILIADO POR COMPUTADOR (CAPP)

Modelo digital

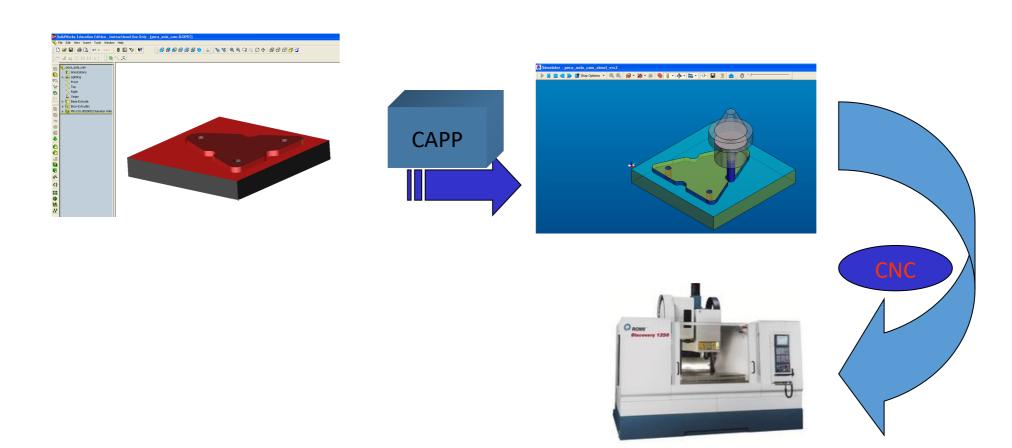
Planejador

Processos

NÍVEL DE AUTOMAÇÃO DO PLANEJAMENTO

PLANEJAMENTO AUTOMÁTICO

Modelo digital

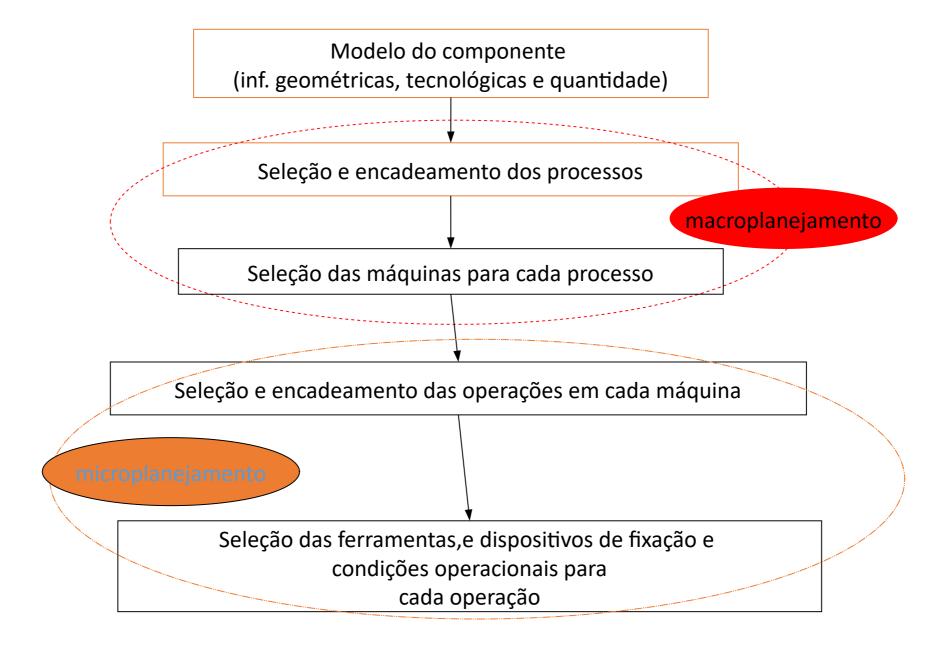


NÍVEL DE AUTOMAÇÃO DO PLANEJAMENTO "estado da arte"

EXEMPLO DA APLICAÇÃO DA TECNOLOGIA CAD-CAM

PROBLEMAS AINDA NÃO RESOLVIDOS

Modelo incompleto: geometria & inf. Tecnológicas (demanda a entrada de informações complementares)



Seleção e encadeamento dos processos (não existem sistemas para o macroplanejamento)

Seleção e encadeamento das operações (estágio bem avançado com a utilização de features)

PLANEJAMENTO DE PROCESSOS

MODELAGEM DOS PROCESSOS

Propriedade	Tipo	Unidade	Resolução	Virmin	Virmax	Lista			
	Restriç	ões técnic	as						
Material	0								
Massa admissível	1	Kg	0,1						
Volume da caixa envoltória (Vce)	1	m^3	0,001						
Relação (Vlq/Vce)	1		0,01						
Desvio dimensional	1	μ m	0,1						
Desvio geométrico	1	μ m	0,1						
Rugosidade (Ra)	1	μ m	0,1						
Espessura mínima	1	mm	0,1						
Features especiais	0								
Restrições econômicas									
Tempo por peça	1	Min	0,1						
Custo horário	1	R\$	0,1						
Tempo de preparação	1	Horas	0,1						
Flexibilidade	0					****			
Investimento inicial	1	R\$	1						
Tempo de implementação	1	dias	1						
	urança	a humana (e impacto an	nbiental					
Geração de resíduos não tóxicos	0					****			
Geração de resíduos tóxicos	0					****			
Emissão sonora	1	dB	1						
Emissão de gases e/ou vapores tóxicos	0					****			
Emissão de particulados	0					***			
Temperatura operacional	1	°C	1						
Energia específica	1	J/Kg	1						

^{*** -} empregar qualificadores: Alta, média, baixa

MICROPLANEJAMENTO – DETALHAMENTO DAS OPERAÇÕES (processos de usinagem)

DISPOSITIVOS PARA LOCALIZAÇÃO E FIXAÇÃO

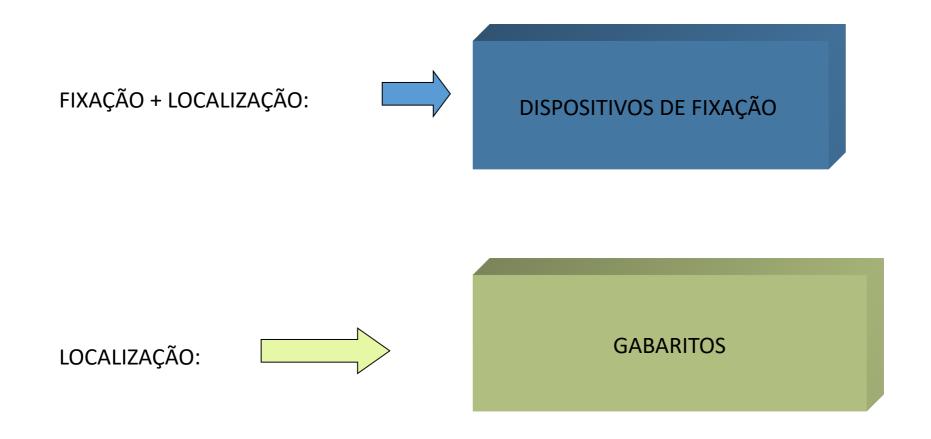
GARANTIR REPETIBILIDADE/ REPRODUTIBILIDADE

DA OPERAÇÃO

FUNÇÕES

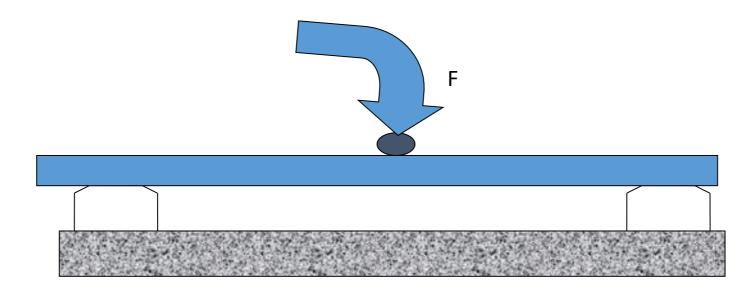
REDUZIR O TEMPO DE CARGA-DESCARGA

GARANTIR UMA CONDIÇÃO DE VISIBILIDADE MÁXIMA (aumentar a flexibilidade de projeto da máquina)


RIGIDEZ ESTÁTICA E DINÂMICA ELEVADAS

REQUISITOS (ESTRUTURA)

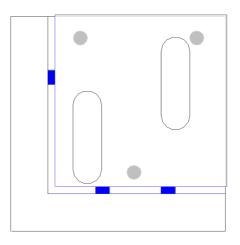
GARANTIR O PRINCÍPIO 3-2-1 DE LOCALIZAÇÃO


ESPAÇO PARA EVACUAÇÃO DE CAVACOS, SAÍDA DE FERRAMENTAS E FLUIDOS

FIXAÇÃO X LOCALIZAÇÃO

FIXAÇÃO

- PODE SER FEITA DIRETAMENTE NA MESA DA MÁQUINA OU NA BASE DO DISPOSITIVO.
 - ⇒AS MESAS POSSUEM RASGOS "T" QUE FACILITAM A FIXAÇÃO.
- ⇒AS TENSÕES DE FIXAÇÃO DEVEM SER MINIMIZADAS PARA EVITAR DEFORMAÇÕES ELÁSTICAS NA PEÇA QUE COMPROMETAM AS TOLERÂNCIAS.
- ⇒AS FORÇAS DE FIXAÇÃO DEVEM DIRIGIR A PEÇA CONTRA OS PONTOS DE LOCALIZAÇÃO.


LOCALIZAÇÃO

→ PRINCÍPIO 3-2-1 — ALINHAR A PEÇA EM TRÊS PLANOS PERPENDICULARES.

APLICA-SE ÀS PEÇAS QUE POSSUEM SUPERFÍCIES PLANAS.

GERALMENTE ADOTADO NAS OPERAÇÕES DE FRESAMENTO, FURAÇÃO, RETIFICAÇÃO PLANA, MANDRILAMENTO, ...

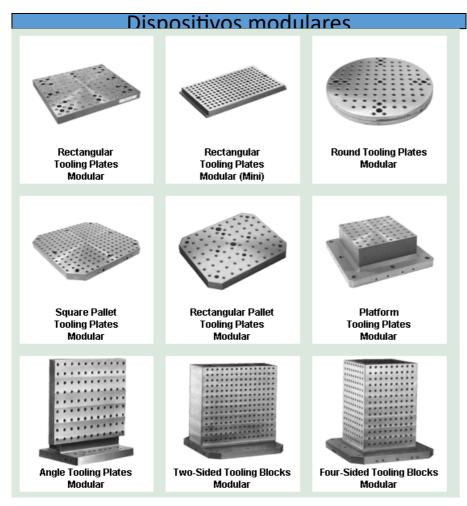
→ SUPERFÍCIES DE REVOLUÇÃO SÃO LOCALIZADAS PELO ALINHAMENTO DO EIXO DE REVOLUÇÃO (DIRETRIZ). Ex.: placas autocentrantes ou blocos "V".

CLASSIFICAÇÃO DOS DISPOSITIVOS

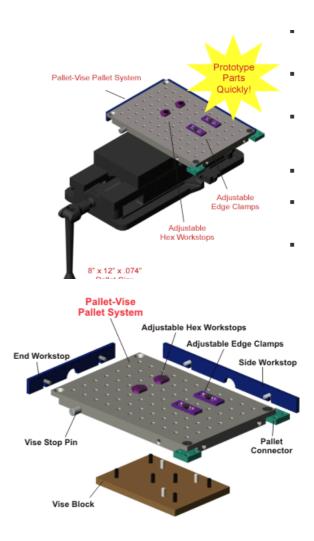
UNIVERSAIS:

- Geralmente acompanham a máquina.
- Podem ser empregados na fixação/localização de vários tipos de peças.
- Ex: morsas; placas de três e quatro castanhas; pinças; divisores; grampos; mesas eletromagnéticas...

ESPECIAIS:

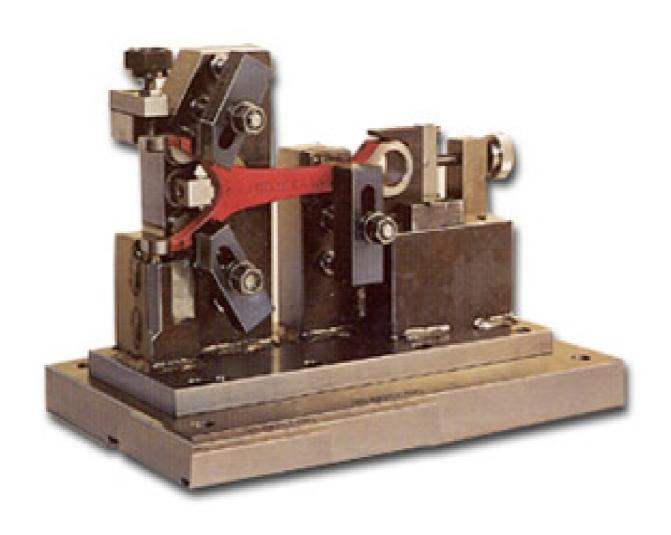

- Exigem projeto e fabricação dedicada.
- Na maioria das vezes são concebidos para um tipo de peça ou família.

MODULARES:


*combinação de grampos e localizadores sobre uma plataforma com furos lisos e roscados

TÉCNICAS DE FIXAÇÃO/LOCALIZAÇÃO

(alguns exemplos...)



Link: http://www.carrlane.com/Catalog/index.cfm/

http://www.2linc.com/Pallet Vise workholding.htm

DISPOSITIVO ESPECIAL

Link: http://www.metalmag.com.br/placald01.htm

Reference Free Part Encapsulation (RFPE)

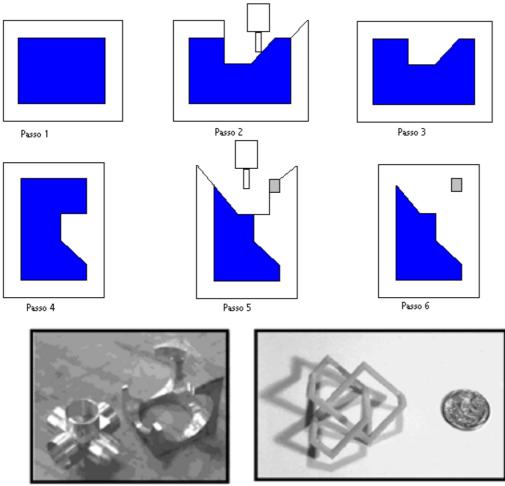


Figure 2. Machined parts using RFPE. The tube walls are less than 1/32-in, thick. The overall dimension is 4x4x4 in. Also shown is the scrap block from which the part was machined.

Fonte: Sanjay Sarma

Fixação com material de sacrifício

Primeira fixação: dispositivo universal

Segunda fixação: pelo próprio material com auxílio de cola

